OUTLINE OF THE TALK

RENORMALIZATION OF THE NN INTERACTION: ONE BOSON EXCHANGE

Álvaro Calle Cordón (In colaboration with E. Ruiz Arriola)

University of Granada, Spain.

MENU 2010, Williamsburg, VA, USA May 31, 2010

OUTLINE OF THE TALK

OBE IN THE NN INTERACTION AND $1/N_c$ EXPANSION

- OBE and the 1/N_c Expansion
- Old Nuclear Physics Symmetries
- Renormalized Deuteron

Motivation OBE in the NN interaction and $1/N_c$ expansion Summary and conclusions

OUTLINE OF THE TALK

2) OBE IN THE NN INTERACTION AND $1/N_c$ expansion

- OBE and the 1/*N_c* Expansion
- Old Nuclear Physics Symmetries
- Renormalized Deuteron

A (1) > A (2) > A

MOTIVATION: NEED FOR RENORMALIZATION

Nuclear force at the hadronic level

 \Rightarrow unknown at short distances (high momentum) \Leftarrow

Its non-perturbative nature

 \Rightarrow better handled with quantum mechanical potentials \Leftarrow

Chiral symmetry

 \Rightarrow NN forces of practical interest in nuclear physics \Leftarrow

● Chiral expansions ⇒ singular potentials at short distances

$$V(r) \rightarrow \pm \frac{1}{r^n}$$
, for $r \rightarrow 0$ and $n > 2$

Renormalization is the most natural tool to handle singularities.

MOTIVATION: CHIRAL POTENTIALS

 Coordinate space renormalization has been used for chiral and singular potentials (Pavón+Arriola,PRC74:054001,2006.)

$$V(r)
ightarrow rac{1}{f_\pi^n M_N^m} rac{1}{r^{n+m+1}}$$

- Results converge for practical cut-offs $r_c \sim 0.5 {\rm fm}$ which is $\sim 1/p_{\rm max}$. The more singular the better.
- Renormalization with a BC is equivalent to put counterterms in the Lippmann-Schwinger equation in momentum space but computationally more efficient (Entem+Pavon+Machleidt+Arriola, PRC77:044006,2008).
- TPE relativistic potentials (Higa+Pavón+Arriola, C77:034003,2008.)
- TPE with ∆'s (Pavón+Arriola, PRC74:054001,2006.)

・ 同 ト ・ ヨ ト ・ ヨ ト

MOTIVATION

OBE IN THE NN INTERACTION AND 1/N_c EXPANSION SUMMARY AND CONCLUSIONS

MOTIVATION: CHIRAL POTENTIALS (${}^{1}S_{0}$ phase shift)

In all TPE approaches there is overbinding $\sim 5 - 10^0$. Missing physics σ, ρ, ω ?. ÁLVARO CALLE CORDÓN RENORMALIZATION OF THE NN INTERACTION

OBE AND THE $1/N_c$ EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

OUTLINE OF THE TALK

OBE IN THE NN INTERACTION AND $1/N_c$ EXPANSION

- OBE and the 1/N_c Expansion
- Old Nuclear Physics Symmetries
- Renormalized Deuteron

OBE MODEL OF THE NN INTERACTION

 Includes all mesons with masses around the nucleon mass, i.e., π, σ, ρ(770) and ω(782)

$$\begin{split} \mathcal{L}_{\pi NN} &= -\frac{g_{\pi NN}}{2\Lambda_N}\bar{N}\gamma_\mu\gamma_5\tau\cdot\partial^\mu\pi N \;, \\ \mathcal{L}_{\sigma NN} &= -g_{\sigma NN}\sigma\bar{N}N \;, \\ \mathcal{L}_{\rho NN} &= -g_{\rho NN}\bar{N}\tau\cdot\rho^\mu\gamma_\mu N - \frac{f_{\rho NN}}{2\Lambda_N}\bar{N}\sigma_{\mu\nu}\tau\cdot\partial^\mu\rho^\nu N \\ \mathcal{L}_{\omega NN} &= -g_{\omega NN}\bar{N}\gamma_\mu\omega^\mu N - \frac{f_{\omega NN}}{2\Lambda_N}\bar{N}\sigma_{\mu\nu}\partial^\mu\omega^\nu N \end{split}$$

3 N

- In general we get a non-relativistic potential with
 - \rightarrow central and tensor terms,
 - \rightarrow spin-orbit (**L** · **S**),
 - \rightarrow non-local terms ($abla^2$), ...

THE LARGE N_c EXPANSION (T'HOOF, WITTEN)

70's t'Hoof and Witten clever idea

Change QCD SU_c(3) to a SU(N_c) gauge group and choose an expansion in $1/N_c$ (N_c $\rightarrow \infty$ keeping $\alpha_s N_c$ fix)

Hadronic spectrum (baryons and mesons are stable)

$$m_{meson} \sim N_c^0, \; \Gamma_{meson} \sim 1/N_c, \; m_{N,\Delta} \sim N_c, \; \Gamma_\Delta \sim 1/N_c$$

Scattering

$$g_{MMM} \sim 1/\sqrt{N_c}, \; g_{k-mesons} \sim 1/N_c^{(k-2)/2}, \; g_{MBB} \sim \sqrt{N_c}$$

• If nucleons are heavy baryons in this limit $(m_N \sim N_c)$

- \Rightarrow a smooth limit of the large N_c is possible (Witten, 1997)
- \Rightarrow the non-relativistic potential is a well defined

LARGE N_c POTENTIALS (KAPLAN, SAVAGE, MANOHAR)

Spin-flavour structure of the NN interaction:

$$V(r) = V_{C}(r) + (\sigma_{1} \cdot \sigma_{2})(\tau_{1} \cdot \tau_{2})W_{S}(r) + (\tau_{1} \cdot \tau_{2})W_{T}(r)S_{12} \sim N_{c}$$

 $Corrections \sim \ 1/N_c$

- spin-orbit,
- non-local, relativistic,
- meson widths,

Observables accuracy $\sim 1/N_c^2 \sim 10\%$!

Leading N_c - OBEP not complete large N_c calculation ! not a $1/M_N$ or p expansion !

$$\begin{split} V_C(r) &= -\frac{g^2_{\sigma NN}}{4\pi} \frac{e^{-m_e r}}{r} + \frac{g^2_{\omega NN}}{4\pi} \frac{e^{-m_e r}}{r} \,, \\ W_S(r) &= \frac{1}{12} \frac{g^2_{\pi NN}}{4\pi} \frac{m^2_{\pi}}{\Lambda^2_N} \frac{e^{-m_e r}}{r} + \frac{1}{6} \frac{f^2_{\rho NN}}{4\pi} \frac{m^2_{\rho}}{\Lambda^2_N} \frac{e^{-m_{\rho} r}}{r} \,, \\ W_T(r) &= \frac{1}{12} \frac{g^2_{\pi NN}}{4\pi} \frac{m^2_{\pi}}{\Lambda^2_N} \frac{e^{-m_e r}}{r} \left[1 + \frac{3}{m_{\pi} r} + \frac{3}{(m_{\pi} r)^2} \right] \\ &\quad - \frac{1}{12} \frac{f^2_{\rho NN}}{4\pi} \frac{m^2_{\rho}}{\Lambda^2_N} \frac{e^{-m_{\rho} r}}{r} \left[1 + \frac{3}{m_{\rho} r} + \frac{3}{(m_{\rho} r)^2} \right] \,, \end{split}$$

MOTIVATION OBE IN THE NN INTERACTION AND 1/N_c expansion SUMMARY AND CONCLUSIONS OBE AND THE 1/N_c EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

The large N_c OBE potential (S-waves)

NATURAL VALUES OF COUPLINGS

- $g_{\pi NN} = 13.1 \sim g_A M_N / f_{\pi}$ (Goldberger-Treiman π 's),
- $g_{\sigma NN} = 10.1 \sim M_N / f_{\pi}$ (Goldberger-Treiman σ 's),
- $g_{\omega NN} =$ 9 \sim 3 $g_{
 ho NN}$ (SU(3) Symmetry + OZI rule)
- $f_{
 ho NN} = 15 17 ~ \sim (\mu_{
 ho} \mu_{
 ho} 1) ~ g_{
 ho NN}$ (VMD)

• $m_{\rho} = m_{\omega} \equiv m_{v}$ strong correlations, we define

$$g^*_{\omega NN} = \sqrt{g^2_{\omega NN} - rac{f^2_{
ho NN} m^2_{
ho}}{2M^2_N}}$$

• Natural values imply $g^*_{\omega NN} = 0 - 7$

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト …

MOTIVATION OBE IN THE NN INTERACTION AND 1/N_c expansion SUMMARY AND CONCLUSIONS OBE AND THE 1/N_c Expansion Old Nuclear Physics Symmetries Renormalized Deuteron

The large N_c OBE potential (S-waves)

NATURAL VALUES OF COUPLINGS

- $g_{\pi NN} = 13.1 \sim g_A M_N / f_{\pi}$ (Goldberger-Treiman π 's),
- $g_{\sigma NN} = 10.1 \sim M_N / f_{\pi}$ (Goldberger-Treiman σ 's),
- $g_{\omega NN} = 9 \sim 3 \ g_{\rho NN} \ (SU(3) \ \text{Symmetry} + \text{OZI rule})$

•
$$f_{
ho NN} = 15 - 17 \sim (\mu_{
ho} - \mu_n - 1) \ g_{
ho NN}$$
 (VMD)

• The ¹S₀ potential becomes

$$V_{s}(r) = V_{t}(r) = -\frac{g_{\pi NN}^{2} m_{\pi}^{2}}{16\pi M_{N}^{2}} \frac{e^{-m_{\pi}r}}{r} - \frac{g_{\sigma NN}^{2}}{4\pi} \frac{e^{-m_{\sigma}r}}{r} + \frac{g_{\omega NN}^{*}}{4\pi} \frac{e^{-m_{\nu}r}}{r} + \mathcal{O}(N_{c}^{-1})$$

く 戸 ト く ヨ ト く ヨ ト

TRADITIONAL APPROACH

• Solve the Schrödinger's eq. with a regular BC $u_p(0) = 0$

$$-u_{\rho}''(r) + M_N V(r) u_{\rho}(r) = \rho^2 u_{\rho}(r)$$

• Take the asymptotic condition for $r >> 1/m_{\pi}$

$$u_p(r)
ightarrow rac{\sin\left(pr+\delta_0(p)
ight)}{\sin\delta_0(p)}$$

- Unnaturally large scattering length $\alpha_0 = -23.74(2)$ fm.
- Any change in the potential has a dramatic effect,

$$\Delta \alpha_0 = \alpha_0^2 M_N \int_0^\infty \Delta V(r) u_0(r)^2 \mathrm{d}r$$

 Potential parameters must be fine tuned, in particular short distance physics !! MOTIVATION OBE IN THE NN INTERACTION AND 1/N_c expansion Summary and conclusions

Fit of $m_{\sigma},\,g_{\sigma NN}$ and $g^*_{\omega NN}$ to NN phase shifts

Two possible scenarios (very well determined)

Natural values for couplings imply spurious (deeply) bound state

< A >

- ₹ 🖬 🕨

MOTIVATION OBE IN THE NN INTERACTION AND 1/N_c expansion Summary and conclusions OBE AND THE 1/N_c EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

RENORMALIZATION

Short distance physics encoded in LEP's, fine tuning disappear

 $g_{\sigma NN} = 9.1(0.9), \ m_{\sigma} = 501(25) MeV, \ \chi^2/DOF = 0.128$

Image: A matrix

- E -

OLD NUCLEAR PHYSICS SYMMETRIES [WIGNER SU(4)]

- Spin-isospin symmetry with 15-generators: T^a, Sⁱ, G^{ai}
- Irreducible representations of SU(4):
 One nucleon state, a quartet

$$\mathbf{4} = (p \uparrow, p \downarrow, n \uparrow, n \downarrow) = (S = 1/2, T = 1/2)$$

Two nucleon states, two supermultiplet $(-1)^{S+L+T} = -1$

$$\begin{aligned} \mathbf{6}_{A} &= (0,1) \oplus (1,0) \quad L = 0, 2, \dots ({}^{1}S_{0}, {}^{3}S_{1}), ({}^{1}D_{2}, {}^{3}D_{1,2,3}), \dots \\ \mathbf{10}_{S} &= (0,0) \oplus (1,1) \quad L = 1, 3, \dots ({}^{1}P_{1}, {}^{3}P_{0,1,2}), ({}^{1}F_{3}, {}^{3}F_{2,3,4}), . \end{aligned}$$

• Symmetry of the potential \Rightarrow Symmetry of the S-matrix

$$V_{1L}(r) = V_{3L}(r) \Rightarrow \delta_{1L}(p) = \delta_{3L}(p)$$

$$V_{{}^{1}\mathcal{S}_{0}}(r) = V_{{}^{3}\mathcal{S}_{1}}(r) \Rightarrow \delta_{{}^{1}\mathcal{S}_{0}}(\rho) = \delta_{{}^{3}\mathcal{S}_{1}}(\rho)$$

< □ > < 同 > < 三 >

OBE AND THE 1/N_c EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

PUZZLE: $V_1_{S_0}(r) = V_{3S_1}(r)$ BUT $\delta_{1S_0}(\rho) \neq \delta_{3S_1}(\rho)$

Lattice QCD calculations (S. Aoki, T. Hatsuda, N. Ishii)

$$\Rightarrow V_{^1S_0}(r) \simeq V_{^3S_1}(r)$$

• S-wave phase shifts (Nijmegen group) $\rightarrow \delta_{^{1}S_{n}}(p) \neq \delta_{^{3}S_{1}}(p)$

< □ > < 同 > < 回 > < □ > <

OBE AND THE $1/N_c$ EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

SOLUTION: LONG DISTANCES SYMMETRY

• Traditional approach:

$$\begin{cases} V_{s}(r) = V_{t}(r) \\ u_{s}(0) = u_{t}(0) = 0 \end{cases} \Rightarrow \begin{cases} \alpha_{s} = \alpha_{t}, \\ r_{s} = r_{t}, \\ \delta_{s}(\rho) = \delta_{t}(\rho) \end{cases}$$

Renormalization viewpoint: The symmetry is postulated at long distances but <u>broken</u> at short distances

$$\begin{cases} V_{s}(r)|_{r \to \infty} = V_{t}(r)|_{r \to \infty} \\ u_{s}(0^{+}) \neq u_{t}(0^{+}) \end{cases} \Rightarrow \begin{cases} \alpha_{s} \neq \alpha_{t}, \\ r_{s} \neq r_{t}, \\ \delta_{s}(p) \neq \delta_{t}(p) \end{cases}$$

A (10) < A (10) </p>

LONG DISTANCES SYMMETRY (PHASES CONNECTED)

A symmetry of the potential is not a symmetry of the S-matrix. ACC + Ruiz Arriola, PRC **78**, 054002 (2008)

ÁLVARO CALLE CORDÓN RENORMALIZATION OF THE NN INTERACTION

LONG DISTANCES SYMMETRY (WIGNER CORRELATION)

 $r_0(\alpha_0)$ universal relation ($r_s \neq r_t$ because $\alpha_s \neq \alpha_t$)

< (目) < (目) < (目) < (目) < (目) < (目) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

MOTIVATION OBE AND 7 OBE IN THE NN INTERACTION AND 1/Ne EXPANSION OLD NUCLI SUMMARY AND CONCLUSIONS RENORMAL

OBE AND THE 1/N_c EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

LONG DISTANCES SYMMETRY (WIGNER CORRELATION)

$r_0(\alpha_0)$ universal relation (atomic physics analogous)

ACC + Ruiz Arriola, PRA 81, 044701 (2010)

A (1) > A (2) > A

OLD NUCLEAR PHYSICS SYMMETRIES [SERBER]

• Saturation of nuclear forces: need singular Serber forces

$$V=\frac{1}{2}(1+P_M)V(r)$$

- No interaction in odd L-waves !!
- Nature shows a clear Serber symmetry:

$$f_{np}(\theta) \simeq f_{np}(\theta - \pi)$$

POTENTIAL SUM RULES

Assume the potential to be central + (small) non-central

$$V_{NN} = V_0 + V_1$$

$$V_0 = V_C + \tau W_C + \sigma V_S + \tau \sigma W_S,$$

$$V_1 = (V_T + \tau W_T) S_{12} + (V_{LS} + \tau W_{LS}) L \cdot S_2$$

Define the mean potential (for the center of the multiplet)

$$V_{2S+1L}(r) = \frac{\sum_{J=L-S}^{L+S} (2J+1) V_{3L_J}(r)}{(2S+1)(2L+1)}$$

Serber requires vanishing odd-L waves

$$V_{1L}(r) = V_{3L}(r) = 0 \qquad \text{odd - L},$$

Wigner requires spin independence in all waves

$$V_{1L}(r) = V_{3L}(r)$$
 all - L

Wigner and Serber are incompatible !!

MOTIVATION OBE IN THE NN INTERACTION AND 1/N_c expansion SUMMARY AND CONCLUSIONS OBE and the $1/N_c$ Expansion OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

POTENTIAL SUM RULES (ARGON V18)

Even-L waves Wigner symmetry while odd-L triplet Serber symmetry

< ∃ >

< 口 > < 同 >

3

OBE AND THE 1/N_c EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

POTENTIAL SUM RULES (ARGON V18 V_{lowk})

Even-L waves Wigner symmetry while odd-L triplet Serber symmetry

ÁLVARO CALLE CORDÓN RENORMALIZATION OF THE NN INTERACTION

< 口 > < 同 >

- ₹ ∃ →

MOTIVATION OBE IN THE NN INTERACTION AND 1/N_c expansion Summary and conclusions OBE AND THE 1/N_c EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

POTENTIAL SUM RULES ($\chi N^3 LO V_{lowk} \Lambda = 500 MeV$)

Even-L waves Wigner symmetry while odd-L triplet Serber symmetry

ÁLVARO CALLE CORDÓN RENORMALIZATION OF THE NN INTERACTION

 </l

- ₹ ∃ →

OBE AND THE 1/N_c EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

POTENTIAL SUM RULES ($\chi N^3 LO V_{lowk} \Lambda = 600 MeV$)

Even-L waves Wigner symmetry while odd-L triplet Serber symmetry

ÁLVARO CALLE CORDÓN RENORMALIZATION OF THE NN INTERACTION

 </l

- ₹ ∃ →

MOTIVATION OBE IN THE NN INTERACTION AND $1/N_c$ expansion Summary and conclusions OBE AND THE $1/N_c$ EXPANSION OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

NON-CENTRAL PHASE SHIFTS SUM RULES

First order perturbation theory $\delta_{LJ}^{ST} = \delta_{L}^{ST} + \Delta \delta_{LJ}^{ST}$:

$$\begin{split} \delta_{1P_{1}} &= \frac{1}{9} \left(\delta_{3P_{0}} + 3\delta_{3P_{1}} + 5\delta_{3P_{2}} \right) & \text{Wigner} \\ &= \delta_{3P} = 0 & \text{Serber} \\ \delta_{1D_{2}} &= \frac{1}{15} \left(3\delta_{3D_{1}} + 5\delta_{3D_{2}} + 7\delta_{3D_{3}} \right) \\ \delta_{1F_{3}} &= \frac{1}{21} \left(5\delta_{3F_{2}} + 7\delta_{3F_{3}} + 9\delta_{3F_{4}} \right) & \text{Wigner} \\ &= \delta_{3F} = 0 & \text{Serber} \\ \delta_{1G_{4}} &= \frac{1}{27} \left(7\delta_{3G_{3}} + 9\delta_{3G_{4}} + 11\delta_{3G_{5}} \right) \end{split}$$

Wigner and Serber are incompatible !!

ト イポト イラト イラ

MOTIVATION OBE IN THE NN INTERACTION AND 1/N_c expansion SUMMARY AND CONCLUSIONS OBE and the $1/N_c$ Expansion OLD NUCLEAR PHYSICS SYMMETRIES RENORMALIZED DEUTERON

NIJMEGEN PHASE SHIFT SUM RULES

LARGE N_c and WIGNER-SERBER SYMMETRIES

Large N_c implies Wigner symmetry in even-L channels

$$V_{1_L} = V_{3_L} = V_C(r) - 3W_S(r) + O(N_c^{-1})$$
, even-L

 Large N_c allows Wigner violation in odd-L and Serber violation in spin singlet ¹L channels

$$\begin{array}{lll} V_{1_L} &=& V_C(r) + 9 W_S(r) + \mathcal{O}(1/N_c) \,, \ \, \text{odd-L} \\ V_{3_L} &=& V_C(r) + & W_S(r) + \mathcal{O}(1/N_c) \,, \ \, \text{odd-L} \end{array}$$

Symmetry breaking is compatible with large N_c !!!

• Large N_c may explain Serber symmetry triplet ³L channels if $W_S(r) = -V_C(r)$ which is fulfilled with the identification $m_\sigma = m_\rho = m_\omega$

$$V_{C}(r) = -\frac{g_{\sigma NN}^{2}}{4\pi} \frac{e^{-m_{\sigma}r}}{r} + \frac{g_{\omega NN}^{2}}{4\pi} \frac{e^{-m_{\omega}r}}{r}$$
$$W_{S}(r) = \frac{1}{12} \frac{g_{\pi NN}^{2}}{4\pi} \frac{m_{\pi}^{2}}{\Lambda_{N}^{2}} \frac{e^{-m_{\pi}r}}{r} + \frac{1}{6} \frac{f_{\rho NN}^{2}}{4\pi} \frac{m_{\rho}^{2}}{\Lambda_{N}^{2}} \frac{e^{-m_{\rho}r}}{r}$$

ACC + Ruiz Arriola, PRC 80, 014002 (2009)

RENORMALIZED DEUTERON (PROPERTIES AND PHASES)

Take natural values for couplings and make model independent predictions

	$\gamma(\text{fm}^{-1})$	η	$A_{\rm S}({\rm fm}^{-1/2})$	rm(fm)	$Q_d(fm^2)$	PD	$\langle r^{-1} \rangle$	$\alpha_0(fm)$	$\alpha_{02}(\text{fm}^3)$	$\alpha_2(\text{fm}^5)$	r ₀ (fm)
π	Input	0.02633	0.8681	1.9351	0.2762	7.88%	0.476	5.335	1.673	6.169	1.638
$\pi\sigma$	Input	0.02599	0.9054	2.0098	0.2910	6.23%	0.432	5.335	1.673	6.169	1.638
$\pi \sigma \rho \omega$	Input	0.02597	0.8902	1.9773	0.2819	7.22%	0.491	5.444	1.745	6.679	1.788
$\pi \sigma \rho \omega^*$	Input	0.02625	0.8846	1.9659	0.2821	9.09%	0.497	5.415	1.746	6.709	1.748
Nijmll	Input	0.02521	0.8845(8)	1.9675	0.2707	5.635%	0.4502	5.418	1.647	6.505	1.753
Reid93	Input	0.02514	0.8845(8)	1.9686	0.2703	5.699%	0.4515	5.422	1.645	6.453	1.755
Exp. 1	0.231605	0.0256(4)	0.8846(9)	1.9754(9)	0.2859(3)	5.67(4)		5.419(7)			1.753(8)

ACC + Ruiz Arriola, PRC 81, 044002 (2010)

< A >

- ∃ →

-

RENORMALIZED DEUTERON (PROPERTIES AND PHASES)

We can also include the axial meson (a_1) which is allowed in the large N_c $m_{a_1} = \sqrt{2}m_{\rho}$ (VMD), $g_{a_1NN} = m_{a_1}/m_{\pi}f_{\pi NN}$ (Schwinger relation)

	γ (fm ⁻¹)	η	$A_{S}({\rm fm}^{-1/2})$	$r_m(fm)$	$Q_d(fm^2)$	PD	$\langle r^{-1} \rangle$	$\alpha_0(\text{fm})$	α_{02} (fm ³)	$\alpha_2(\text{fm}^5)$	$r_0(fm)$
π	Input	0.02633	0.8681	1.9351	0.2762	7.88%	0.476	5.335	1.673	6.169	1.638
$\pi\sigma$	Input	0.02599	0.9054	2.0098	0.2910	6.23%	0.432	5.335	1.673	6.169	1.638
$\pi \sigma \rho \omega$	Input	0.02597	0.8902	1.9773	0.2819	7.22%	0.491	5.444	1.745	6.679	1.788
$\pi \sigma \rho \omega^*$	Input	0.02625	0.8846	1.9659	0.2821	9.09%	0.497	5.415	1.746	6.709	1.748
$\pi \sigma \rho \omega^* a_1$	Input	0.02549	0.8985	1.9953	0.2810	5.84%	0.463	5.487	1.735	6.624	1.849
Nijmll	Input	0.02521	0.8845(8)	1.9675	0.2707	5.635%	0.4502	5.418	1.647	6.505	1.753
Reid93	Input	0.02514	0.8845(8)	1.9686	0.2703	5.699%	0.4515	5.422	1.645	6.453	1.755
Exp. 1	0.231605	0.0256(4)	0.8846(9)	1.9754(9)	0.2859(3)	5.67(4)		5.419(7)			1.753(8)

ÁLVARO CALLE CORDÓN

A 3 b

-

 MOTIVATION
 OBE and the 1/N_c Expansion

 OBE in the NN interaction and 1/N_c expansion
 Old Nuclear Physics Symmetries

 Summary and conclusions
 Renormalized Deuteron

RENORMALIZED DEUTERON (EM FORM FACTORS IA)

ÁLVARO CALLE CORDÓN RENORMALIZATION OF THE NN INTERACTION

MOTIVATION OBE AND THE 1/N_c EXPANSION OBE IN THE NN INTERACTION AND 1/N_c EXPANSION SUMMARY AND CONCLUSIONS RENORMALIZED DEUTERON

RENORMALIZED DEUTERON (EM FORM FACTORS IA)

ÁLVARO CALLE CORDÓN RENORMALIZATION OF THE NN INTERACTION

BACKWARD DEUTERON ELECTRO-DISINTEGRATION

$$e^- + d ({}^3S_1 - {}^3D_1) \rightarrow e^- + np ({}^1S_0)$$
 [Adler,Hockert,Riska]
 $rac{d\sigma}{dE_f d\Omega} (180^0) = rac{lpha^2}{4\pi} rac{pq^2}{E_i^2 M_N} [g(q) + h(q)]^2$

p = np c.m. momentum, $E_f = final e^-$ energy, $E_i = incident e^-$ energy, $M_N = nucleon mass,$ q = momentum transfer, g(q), h(q) = structurefunctions (IA + π -MEC + ρ -MEC)

Motivation OBE in the NN interaction and $1/N_c$ expansion Summary and conclusions

OBE and the $1/N_c$ Expansion Old Nuclear Physics Symmetries **Renormalized Deuteron**

NEUTRON CAPTURE $(n + \rho \rightarrow \gamma + d)$

$$n + p({}^{1}S_{0}) \rightarrow \gamma + d({}^{3}S_{1} - {}^{3}D_{1})$$
 [Adler,Hockert,Riska]
 $\sigma = \frac{\pi \alpha \omega^{3}}{2pM_{N}} [g(0) + h(0)]^{2}$

Contribution	$\sigma(np \rightarrow d\gamma) \text{ [mb]}$
$\pi\sigma ho\omega$ IA	302.7
$\pi\sigma ho\omega^*$ IA	297.3
π -exch + π -MEC	323.1
$\pi\sigma\rho\omega$ -exch + $\pi\rho$ -MEC	317
$\pi\sigma\rho\omega^*$ -exch + $\pi\rho$ -MEC	312.5
Experimental	334.2 (5)

$$\omega = B_d = 2.2 MeV$$

$$p = 3.4451 \times 10^{-3} MeV$$

(日)

Motivation OBE in the NN interaction and $1/N_c$ expansion Summary and conclusions

OUTLINE OF THE TALK

MOTIVATION

2 OBE IN THE NN INTERACTION AND $1/N_c$ expansion

- OBE and the 1/*N_c* Expansion
- Old Nuclear Physics Symmetries
- Renormalized Deuteron

SUMMARY AND CONCLUSIONS

- We have analyzed the NN interaction from a different approach which is the 1/N_c expasion of QCD. This potential need to be renormalized.
- Although still incomplete, since tower of mesons and the Δ-isobar should be include consistently, results for central waves and the deuteron are encouraging.
- There is a CHOICE between short distance fine-tuning and renormalization.
- Our point of view: minimize the impact of things you know worst.

 \Rightarrow Short distance physics hardly accessible \Leftarrow

• You may learn a lot more admitting fixing fine-tuned parameters as independent variables on their own.

 \Rightarrow For example the scattering length $\alpha_0 \Leftarrow$

 Once this is done you obtain short distance insensitivity and you can answer about accessible long distance issues.

・ロト ・ 同ト ・ ヨト ・ ヨト